US009253077B2

a2 United States Patent 10) Patent No.: US 9,253,077 B2
Chang et al. (45) Date of Patent: Feb. 2, 2016
(54) PARALLEL TOP-K SIMPLE SHORTEST 2007/0086358 Al* 4/2007 Thubertetal. 370/254
PATHS DISCOVERY 2011/0172956 Al 7/2011 Nakadai
2012/0254333 Al* 10/2012 Chandramouli et al. 709/206
71) Applicant: Int tional Busi Machi
(71) Applican C"():’;’;:a't‘i;‘z AI“HSI'O"I:’ESN;EU'S“)“ FOREIGN PATENT DOCUMENTS
WO 2011015057 Al 2/2011
(72) Inventors: Yuan-Chi Chang, Armonk, NY (US);
Mustafa Canim, Ossining, NY (US) OTHER PUBLICATIONS
(73) Assignee: International Business Machines Jin'Y. Yen, “Finding the K Shortest Loopless Paths in a Network,”
Corporation, Armonk, NY (US) Management Science, Jul. 1971, pp. 712-716, vol. 17, No. 11,
INFORMS.
(*) Notice: Subject to any disclaimer, the term of this Michael_J . Quinn and Narsingh Deo, “Parallel Graph Algorithms,”
patent is extended or adjusted under 35 Computing Surveys, Sep}.ll984, pp. 319-348, vol. 161,1N0. 3, Com-
puter Science Dept., Washington State University, Pullman, WA.
US.C. 154(b) by 455 days. David Eppstein, “Finding the k Shortest Paths,” Mar. 1997, pp. 1-26,
. Department of Information and Computer Science, University of
(21) Appl. No.: 13/690,282 California, Irvine, CA.
(22) Flled Now. 30, 2012 sk cited by examiner
(65) Prior Publication Data Primary Examiner — Vivek Srivastava
US 2014/0156826 Al Jun. 5, 2014 Assistant Examiner — Sibte Bukhari
(74) Attorney, Agent, or Firm — Nidhi Garg, Esq.; Otterstdt,
(51) Int.CL Ellenbogen & Kammer, LLP
HO4L 12/721 (2013.01)
(52) US.CL (57) ABSTRACT
C.PC s, HO04L 45/12 (2013.01) A method for searching the top-K simple shortest paths
(58) Field of Classification Search between a specified source node and a specified target node in
CPC e HO4L 45/12 a graph, with graph data partitioned and distributed across a
USPC s 709/224 plurality of computing servers, the method including a paral-
See application file for complete search history. lel path search initialized from either one or both of the source
. and target nodes and traversing the graph by building likely
(56) References Cited path sequences for a match. Each computing server deter-
U.S. PATENT DOCUMENTS mines and forwards a path sequence as discovery progresses
. until the top-K paths are discovered.
7,420,923 B2 9/2008 Helgesen
2005/0267940 Al 12/2005 Galbreath et al. 30 Claims, 11 Drawing Sheets

106
F

100
Processor Processor
102 7 Memory Memory
.4 Stlorage Storage
104] ’
2 &
108
\ 4 L F
| Network |

Processor

Memory

Storage

Processor

Memory

Storage

U.S. Patent

Feb. 2, 2016

Sheet 1 of 11

US 9,253,077 B2

rmg FiG. 1
00—~y
Processor Processor
102 <7 Memary Memory
1§ Storage Storage
104]] :
108
, [~
i Network]
A Y
v y
Processor Processor
Memary Memoary
Storage Storage
FIG. 2
Server 1 Server 2 Server 3

Server 4

Server &

U.S. Patent Feb. 2, 2016 Sheet 2 of 11 US 9,253,077 B2

FIG. 3
Edge origin Edge destination Edge weight Edge attributes
N10 N20 ik 12/10/2011
N10 N24 17 1211212011
N20 N30 19 1211272011
N24 N40 23 121122011
N30 N40 13 1212372011
N32 N30 37 12/28/2011

FIG. 4

400

Query <source,farget> is \J
broadcasted to all the servers

v
402

A server creates one or more -
path sequences

'

The server inifializes an empty 404
list to store top-K path sequences _,J
found so far

v
406

The server initializes a cutoff | _~
threshold

y

408
The server mutticasts other /

servers the created sequences

410
Start asynchronous parallel § __~

processing until termination

U.S. Patent

500

Feb. 2, 2016

At any time and asynchronously, a server
receives from a sending server:

Batch of path sequences

Cutoff threshold from the sending server

v

502
]

For each path sequence in the recaived
batch, look up the next hop from local
adjacency list

Sheet 3 of 11

FiG.5

504

No

506
p—

The next hop is appended io the path
sequence with the path weight updated

Path weight > cuto
threshold?

Destination node is
the target

514
N

The completed sequence is entered the
server maintained top-K list; update the new
cutoff threshold

A

Dropped

Dropped

516

Yes

Destination node at
the same server

Batch incomplete path sequences to their
respective destination sefvers

¥

In each batch, sach sequence is checked
against the current cutoff threshold

Path weight > cuto
threshold?

522

Send only every top-K sequences of the
same destination in the batch, and the
cuirrent cutoff threshold, to the respective
server

US 9,253,077 B2

Dropped

U.S. Patent Feb. 2, 2016 Sheet 4 of 11 US 9,253,077 B2

FIG. 6
h I 600
e asynchronous, parallel iterations

terminate when ali servers stopped working 5
and had no sequences to exchange

602
Merge the local top-K path sequences from |
each server {o elect the global fop-K paths

FIG.7

E\F

AL

Y/

C
Server 1 (A, B, E, G, H) Server 2{(C,D, F, 1)
Origin Destination § Weight Origin Destination § Weight
A C 1 C B 1
A E 2 D C 2
B A 1 D H 1
B D 2 D G 2
E 3] 1 D F 1
G H 2 F E 2
H ! 1 F i 1
1 G 2

U.S. Patent Feb. 2, 2016 Sheet 5 of 11 US 9,253,077 B2

FIG. 8
Query: top-2 paths from Ato |
Server (A, B,E, G, H) Server 2{(C, D, F, 1)

Cutoff threshold: infinity

800 Top-2 paths: {7, 7}

Sequences Weight s
Cutoff threshold: infinity 802
AC 1 \ Top-2 paths: {AEDF! (55, 7}
AED
= : Sequences Weight
\ AGC.B 2

AEDCE 6
AEDH 4

Cutoff threshold: 8
Top-2 paths: {AEDHI(5), AEDGHI(8)}

AEDGC 5

AEDFE Loop

804
K‘ Secuences Weight
ACBA Loop / AEDFI 5

AEDCBA Loop
ACBD 4
A E DRI 5

AEDGHI 8

Cutoff threshold: 6
Top-2 paths: {AEDF! (5), ACBDFI (6)} 806
Sequences Weight ‘/

A C.B.D,C Loop
A C.B.D,H 5

808 Culoff threshold: 6
Top-2 paths: {AEDHI(5), AEDGHI(8)} / ACBDG |86
l ACBDFI |6
Sequences Weight /

AC B D HI 7
ACBDGHIEY

Terminate since all the servers completed processing

Merge the local top-2 paths fo get the global top-2 results:
A>E->D->F->] {5} and A->E->D->H->} (5)

U.S. Patent

Feb. 2, 2016 Sheet 6 of 11

FIG. 9

Query <source farget> sent to one or more
servers

900

)

{

A receiving server creates one or more path
sequences

902

v

The server initializes an emply list to store fop-K
path sequences found so far

904

_J

v

The server initializes a cutoff threshold

906

{

For every intermediate node, the server
initializes an empty list to store top-K path
sequences from <source> {o <intermediate>

908

/

v

For every intermediate node, the server
initializes an empty list to store top-K path
sequences from <intermediate> to <target>

910

v

The server multicasts other servers the created
sequences

912

_J

v

Start asynchronous paraliel processing until
termination

914

_J

US 9,253,077 B2

U.S. Patent Feb. 2, 2016 Sheet 7 of 11 US 9,253,077 B2

1016 FIG. 10

N At any time and asynchronously, a server
receives from a sending server:

Batch of path sequences

Cutoff threshold from the sending server

10\18_ For each path sequence in the recaived

batch, icok up the next hop from iocal <+
adiacency fist
1020
Yas
Dropped
No
1022 °
N The next hop is appended {o the path
sequence with the path weight updated
Path weight > cutof ronoed
threshold? foppe
1026 . ;
. Update Top-K intermediate shortest paths
from start and target nodes to the last node Ves
of the path sequences ©3
1030 = Destination node at
- the same server
The new pathis
New shortest path entered to the servers
discovered? top-K list; update the
new culoff threshold 1038
| S Bateh incomplete path sequences
to their respective destination
Servers
Destination node is No 1040 | in each baich, each sequence is
the target? | checked against the current cutoff
threshold

1042

1034 The completed sequence is entered the

server maintained top-K list; update the
new cutoff threshold

Path weight > cuto
threshold?

Dropped

1044 | seng only every top-K sequences
N— of the same destination in the

batch, and the current cutoff

threshold, to the respective server

U.S. Patent

Server 1 {A, B, D, F, G)

Feb. 2, 2016

FIG. 11

Sheet 8 of 11

The asynchronous, paralie! iterations
terminate when all servers stopped working
and had no sequences 1o exchange

1046

)

v

Merge the focal top-K path sequences from
each server {o elect the global top-K paths

1048
v

FIG. 12

US 9,253,077 B2

G

Origin Destination § Weight
A B 1
A 0 2 Server 2 {C, E, H)
B A 1

Origin Destination § Weight
B C 1

C B 1
D A 2

G D 2
D C 2

C F 1
D £ 1

C G 2
F C 1

E D 1
F G 2

E H 2
F H 1

H £ 2
G C 2

H F 1
G F 2

H G 1
G H 1

US 9,253,077 B2

U.S. Patent Feb. 2, 2016 Sheet 9 of 11
FIG. 13A
Query: top-2 paths from Ato H
Server 1{A, B, D, F, G} Server 2{C, E. H)
Cutoff thresheld: infinity Cutaff threshold: infinity
1300 Top-2 paths: {7, 7} Top-2 paths: {7, 7}
L. Sequences Weight Sequences Weight 1304
A B A Loop HED 3 /
AB.C 2 HF 1
ADA Loop R G 1
ADC 4
ADE 3
1302 y 1306
tnterme { From Source From Target Interme § From Source From Target
L, diate diate
AB 1 C
D AD2 / E HE2
F
G
Cutoff threshold: infinity Cutoff threshold: infinity
1308 Top-2 paths: {ADEH (5}, 7} Top-2 paths {ADEH (5}, 1
‘L, Sequences Weight Sequences Weight 1312
H E DA 5 AB,C.B Loop ‘/’
HEDC 5 ABCD 4
HEDE Loop A, B CF 3
HFC 2 ABCG 4
HFEH Loop ADCB 5
HFGC 5 ADCD Loop
HF G H Loop ADCF 5
HGC 3 ADC.G 6
H G H Loap ADED Loop
HGFC 4 ADEH 5
H G FH Loop
1310 y y 1314
L Interme. § From Source From Target fnterme § From Sowrce From Target 4/
diate diate
B AB1 C ABC 2, ADC4
3] AD 2 HED 3, / £ ADE 3 HE2
F HF 1, HGF 3
G HG 1, HFG 3

0 1316

te 1320

U.S. Patent Feb. 2, 2016 Sheet 10 of 11 US 9,253,077 B2

FIG. 138
from 1310 from 1314
1316 Cutoff threshold: 5 Cutoff threshold: 5 1320
Top-2 paths: {ABCFH (4), HEDA (5)} \ Top-2 paths: {ABCFH {4), ADEH (5}
Sequences Wght Sequences Wght Seguences Woht Sequences Wght
ABCDA Loop ABCGH 5 Drop H,E.D,C B 6 Drop HG.CBR 4
ABCDE G Drop ARCR & Drop M E D.CF 6 Drop N GCD 5 Drop
ABCDC Loop ADCF 5 Drop ntooo 1 o omteteos
5L G, o
ABCFH 4 ADCG 5 Drop 2 H,GCF 4
ABC.EC Loop ADEH 5 Drop HEDCD |loop HG.C.G | Loop
e HFC,B 3
ABCHG 5 Drop H,G,F,C,B § 5Drop
ABCGC Loop H,FC,D 4
ABCGF 6 Drop HEFCG 4 H G FCD §6Drop
C
HECF Loop H G FCF § Loop
1318 v H.F.G,C.B | 5Dmcp H.G.FC.G |Loop
Interme § From Source From Target HEGC.D 8 Dro
diate AN D
B AB 1. ADCH 5 HFGCF | Loop
D AD 2, ABCD 4 HED 3, HFGC G § Loop
F ABCF 3,ADCF § | HF 1, HGF 3
G ABCG4,ADCG 6 | HG 1, HFG2
1324 intermed | From Source From Target 1322
(ﬂ Cutoff threshold: 5 i;_:m 1o SoueE om Target
Top-2 paths: {ABCFH (4), HEDA (5)} o TS prpy— 4._J
Sequences Weight Sequences Weight £ ADE 3 HE 2
HFC, BA 4 HFC.GC Loop
HFCBC Loop HFC GH Loop /
HFECDC Loop HGCBA 5 Drop
HFECDA 6 Drop HG,CBC Loop
HFC.D.E 5 Drop H,G.CFH Loap
HFCGF Loop HGCFC Loop
1326 1
intermy § From Source From Target
L» ediate
8 AB 1,ADCB 5 HFCB 3
D AD 2, ABCD 4 HED 3. HFCD 4
£ ABCF 3. ADCF 5 HF 1, HGF 3
5 PBCG4A.ADCGS | HG 1, HFG2

Terminate since all the servers completed processing

Merge the Jocal top-2 paths to get the globat top-2 results:
A->B->C->F->H {4) and A->D->E->H (5)

U.S. Patent Feb. 2, 2016 Sheet 11 of 11 US 9,253,077 B2

FiG.14
A 1405 1410
1404 \ \
1401 Hard Disk ' _
L,-) Controlier Hard Disk
Processor 1406 o
2 \
Keyboard
Controlier Keyboard
1402
L 1407 a1
Memary
Serial interface Controtter Serial Peripherai Device
1408 B 1413 ~
1403
= Paraliel Interface ‘
Controfier Parallel Interface Device
Signal Source
1409 \\ 1414 j
Display .
Controfier Display

US 9,253,077 B2

1
PARALLEL TOP-K SIMPLE SHORTEST
PATHS DISCOVERY

This invention was made with Government support under
Contract No.: WO911INF-11-C-0200 (Defense Advanced
Research Projects Agency (DARPA)). The Government has
certain rights in this invention.

BACKGROUND

The present invention relates generally to query tech-
niques, and more particularly, to query techniques for detect-
ing top-K simple shortest paths in a graph.

Large scale graph data is widely represented in problems in
scientific and engineering disciplines. For example, the prob-
lems of shortest path and top-K shortest paths appear in the
context of finding connections between friends, tracing
money routes, linking seemingly disconnected criminal
activities, etc. These problems have applications in a variety
of fields, including large scale networks such as the world
wide web and online social networks, which pose challenges
in managing and querying graph data formulated as interac-
tions between people, servers and entities.

BRIEF SUMMARY

According to an embodiment of the present disclosure, a
method for determining a portion of a path in a distributed
network of nodes between a source node and a target node,
wherein graph data representing a portion of a topology of the
distributed network of nodes is stored by a computing server,
includes receiving a batch of incomplete path sequences
between the source node and the target node and a current
cutoff threshold, updating the current cutoff threshold upon
determining that a local cutoff threshold of the computing
server is less than the current cutoff threshold, wherein the
current cutoff threshold is updated to take a value of the local
cutoff threshold, removing each of the incomplete path
sequences containing a loop from the batch of incomplete
path sequences to determine an updated batch, appending a
looked up edge to the updated batch upon determining that a
total path weight of the updated batch is less than the current
cutoff threshold to determine an appended batch, and output-
ting the updated batch to at least one additional computing
server storing graph data representing an additional portion of
the topology of the distributed network of nodes.

According to an embodiment of the present disclosure, a
method for determining a path in a distributed network of
nodes, wherein graph data representing a topology of the
distributed network of nodes is partitioned and stored among
a plurality of computing servers connected via communica-
tion switches, includes initializing a search, in response to a
query at a source node, at an initial computing server storing
a portion of the graph data corresponding to the source node,
determining, by the plurality of computing servers, a plurality
of path sequences forming the path between the source node
and a target node, each of the plurality of computing servers,
excluding a terminating computing server, determining at
least one path sequence between at least two immediate
neighboring nodes along the path, and sending the at least one
path sequence to at least one additional computing server of
the plurality of computing servers storing a respective portion
of the graph data between the source node toward the target
node upon determining that a path weight of the at least one
path sequence is smaller than a cutoff threshold, and deter-
mining, by the terminating computing server, at least one path

10

25

40

45

50

55

60

65

2

sequence directly to the target node given the at least one path
sequence of at least one previous computing server.

According to an embodiment of the present disclosure, a
method for determining a top-K simple shortest path in a
distributed network of nodes, wherein graph data represent-
ing a topology of the distributed network of nodes is parti-
tioned and stored among a plurality of computing servers
connected via communication switches, includes receiving a
query at a source node, initializing a search in response to the
query at an initial computing server storing a portion of the
graph data corresponding to the source node, determining at
least one path sequence directly from the source node to its
direct, immediate neighboring nodes, and sending the at least
one path sequence to at least one additional computing server
storing a respective portion of the graph data between the
source node toward a target node upon determining that a path
weight of the at least one path sequence is smaller than a
cutoff threshold. For each additional computing server, in
parallel, the method can include receiving a batch of incom-
plete path sequences including the at least one path sequence
and a current cutoff threshold, updating the current cutoff
threshold upon determining that alocal cutoffthreshold of the
at least one additional computing server is less than the cur-
rent cutoff threshold, wherein the current cutoff threshold is
updated to take a value of the local cutoff threshold, removing
each of the incomplete path sequences containing a loop from
the batch of incomplete path sequences to determine an
updated batch, appending a looked up edge to the updated
batch upon determining that a total path weight of the updated
batch is less than the current cutoff threshold to determine an
appended batch, updating a top-K list of path sequences upon
determining that the path sequences of the appended batch
reaches the target node, and exiting upon determining that
none of the additional computing servers have more
sequences to exchange and merge into the top-K list of path
sequences and outputting the top-K list of path sequences.

According to an embodiment of the present disclosure, a
computer program product for determining a top-K simple
shortest path in a distributed network of nodes, wherein graph
data representing a topology of the distributed network of
nodes is partitioned and stored among a plurality of comput-
ing servers connected via communication switches, com-
prises computer readable program code configured to deter-
mine a top-K simple shortest path.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Preferred embodiments of the present disclosure will be
described below in more detail, with reference to the accom-
panying drawings:

FIG. 1 is a pictorial representation of a distributed data
processing system for executing methods according to an
exemplary embodiment of the present disclosure;

FIG. 2 depicts a top-K simple shortest path problem on
very large graph data partitioned and managed by a cluster of
computing servers;

FIG. 3 depicts an adjacency list data structure encoding
graph edge information according to an exemplary embodi-
ment of the present disclosure;

FIG. 4 illustrates an initialization of a parallel method from
a queried source node according to an exemplary embodi-
ment of the present disclosure;

FIG. 5 illustrates an independently executed, iterative
method for a computing server to append and update path
sequences before exchanging them with other servers accord-
ing to an exemplary embodiment of the present disclosure;

US 9,253,077 B2

3

FIG. 6 is a flow diagram illustrating terminating conditions
for an iterative parallel processing method to converge to a
result according to an exemplary embodiment of the present
disclosure;

FIG. 7 is an illustrative example of a directed graph parti-
tioned and managed by two computing servers according to
an exemplary embodiment of the present disclosure;

FIG. 8 illustrates an iterative method between the two
computing servers of FIG. 7 to find top-2 paths from node A
to node I in the graph shown in FIG. 7 according to an
exemplary embodiment of the present disclosure;

FIG. 9 illustrates an initialization of a parallel method
executing from both source and target nodes according to an
exemplary embodiment of the present disclosure;

FIG. 10 illustrates an independently executed, iterative
method for a computing server to append and update path
sequences traversed from source or target nodes according to
an exemplary embodiment of the present disclosure;

FIG. 11 is a flow diagram of terminating conditions for an
independently executed, iterative method according to an
exemplary embodiment of the present disclosure;

FIG. 12 is an illustrative example of a bidirectional graph
partitioned and managed by two computing servers according
to an exemplary embodiment of the present disclosure;

FIGS. 13A-B illustrates an iterative method between the
two computing servers to find top-2 paths between node A
and node H in the graph shown in FIG. 12 according to an
exemplary embodiment of the present disclosure; and

FIG. 14 is a block diagram depicting an exemplary com-
puter system for detecting top-K simple shortest paths in a
graph according to an embodiment of the present disclosure.

DETAILED DESCRIPTION

The present disclosure relates generally to query tech-
niques for top-K simple shortest paths in a graph.

According to an exemplary embodiment of the present
disclosure, a query technique employs a cluster of computing
servers, each of which stores and manages a partitioned set of
nodes and edges in the graph. The query technique can be
considered to have data volume scalability over the cluster of
computing servers. The query technique can include a paral-
lel processing method including a distributed search of top-K
shortest paths conducted among the computing servers. Mes-
sages can be exchanged among the computing servers asyn-
chronously as the local findings converge to a result. The
computing servers each include a processor, a memory, and a
persistent storage space where the partitioned graph data can
be stored.

According to an exemplary embodiment of the present
disclosure, a top-K shortest path problem can be divided into
two categories, depending on whether loops are allowed. The
shortest path problem, by definition, does notinclude loops. A
top-K shortest path may or may not include loops.

According to an exemplary embodiment of the present
disclosure, a large scale graph data can be processed. The
graph data represents a topology of the distributed network of
nodes. The large scale graph data is partitioned and stored on
multiple disks.

According to an exemplary embodiment of the present
disclosure, a processing of the partitioned graph data can be
distributed across multiple computing servers in parallel. The
computing servers can have local access to the partitioned
graph data. The computing servers can exchange messages
that contain incomplete node sequences recording paths from
a source query node toward a destination node. Each comput-
ing server can maintain a local top-K list of completed paths,

20

35

40

45

4

as well as a cutoff threshold to terminate certain graph tra-
versals, e.g., graph traversals that do not advance to a target
node.

According to an exemplary embodiment of the present
disclosure, parallel processing can be implemented to
exchange candidate paths between the computing servers
asynchronously, such that the parallel processing converges
to aresult. The parallel processing allows asynchronous mes-
sage exchanges among the computing servers and can accel-
erate the convergence on the results.

With reference now to the figures and in particular with
reference to FIG. 1, an exemplary distributed data processing
system includes one or more servers such as 106, intercon-
nected via a network 108. Each server, such as 106, includes
one or more processors 100 (e.g., central processing units
(CPUs)), a memory 102 and a storage device 104. Code or
instructions implementing processes of exemplary embodi-
ments can be stored in the memory 102 and executed by the
processor 100. The storage devices 104 can store the instruc-
tions, as well as graph data, to be processed by the system.
The graph data can be partitioned and stored across distrib-
uted servers in the system.

Turning now to FIG. 2, an exemplary top-K simple shortest
path problem is illustrated on graph data partitioned and
managed by a data processing system such as that shown in
FIG. 1. The top-K simple shortest path problem may be
expressed as finding the K shortest, loopless paths, each of
which traverses across a sequence of graph nodes connected
by edges from a source node 200 to a target or destination
node 202. Here, loopless means a node does not appear more
than one time in a valid path. Further, shortest refers to the
smallest number of hops or a smallest aggregated measure of
edge weights. FIG. 2 shows a partitioned graph data, wherein
the graph data is stored and managed by six servers. A set of
nodes is associated with each server or computing server; the
associations are illustrated by common patterns in the nodes
and servers. Herein, Server 3 is referred to as an initial com-
puting server since it stores a portion of the graph data includ-
ing the source node and Server 4 is referred to as a terminating
computing server since it stored a portion of the graph data
including the target node.

To ensure certain data management features, including
update consistency, the partitioned graph data can be assumed
to be non-overlapping and non-redundant. Exemplary
embodiments of the present disclosure are described based on
the non-overlapping assumption. However, it should be obvi-
ous to a person skilled in the art to modify exemplary methods
to address other features, such as redundant partitions of
graph data, etc.

FIG. 3 depicts an exemplary adjacency list data structure.
The adjacency list data structure encodes graph edge infor-
mation. The adjacency list representation includes elements
to describe a graph edge, an origin node and a destination
node. Optionally, an edge can be assigned a numerical weight
and other attributes such as date. An edge may be specified as
directional or bi-directional. For graph data, such as web page
references or social network interactions, a table such as
shown in FIG. 3 may contain billions of entries and may not
fitin memory or on a single server. According to an exemplary
embodiment of the present disclosure, the table can be parti-
tioned and managed by a cluster of computing servers (re-
ferred to hereinafter as servers). The table may be partitioned
according to a variety of partition schemes including parti-
tioning by origin node, destination node, both or other
attributes. It can be assumed that a consistent partition
scheme is applied and that each server knows what edge data
the other servers manage in their local persistent storage

US 9,253,077 B2

5

space. For example, given an exemplary partition scheme in
the form of'hash partition by origin node, given a node id, any
server can perform a hash partition to learn which server
holds the edge data associated with the id.

Turning now to FIG. 4, a flow diagram illustrating an
initialization of a parallel method from a queried source node.
The queried source node and target node are broadcasted to
all the servers holding the graph data at block 400. A first
server, which holds the edges originating from the source
node, creates one or more path sequences, representing the
hops directly away from the queried source at block 402. The
first server initializes an empty list to store the top-K path
sequences found so far at block 404 and initializes a cutoff
threshold, which is used to limit the number of paths to track,
to infinity at block 406. The first server multicasts the incom-
plete path sequences (e.g., the first hop away from the source
node) to the other servers at block 408. Herein, multicast
refers to a process wherein a server is sent one or more
incomplete path sequences whose last node in a path
sequence is among the origin nodes of edge data the server
manages. More particularly, given a node identification, any
server can map the node identification to another server that
holds the edge data associated with the node identification. A
first server holds the edges originating from the source node
so it knows the destination node identifications of these
edges. From the destination node identifications, the first
server can map these identifications to respective servers that
hold the edge data of a second hop away from the source node.
Further, not all the incomplete path sequences generated at
block 402 are sent to every server. The distributed processing
system starts an asynchronous parallel processing at block
410.

An exemplary asynchronous parallel processing among
servers is described with reference to FIG. 5 and FIG. 6.
According to an exemplary embodiment of the present dis-
closure, an asynchronous parallel processing among servers
has no set order on the execution operations among servers at
runtime. A server can multicast a batch of incomplete path
sequences to respective servers holding the downstream data
once the batch is available. While there is no fixed order of
execution among parallel servers, within a server, there can be
a fixed program logic. As shown in FIG. 5, at any time and
asynchronously, a current server may receive a new batch of
incomplete paths and a cutoff threshold from a remote send-
ing server at block 500. The cutoff threshold of the current
server is updated to be the lesser of a threshold of the current
server and the cutoff threshold of the sending server.

For each incomplete path sequence in a received batch, the
current server looks up a next hop (edge) from a local adja-
cency list that it manages at block 502. If the next hop destines
to a node that has been visited before by the incomplete path,
the path has formed a loop and the extended path is dropped
at block 504. If not, the next hop is added at the end of the
incomplete path with its aggregated weight updated at block
506. The updated path weight can be checked against the
threshold and if the updated path weight is greater than the
threshold, the path is dropped at block 508. That is, a path can
be dropped because there are at least K other completed path
sequences from the source to the target that have lower
weights. At block 510, it is determined whether the destina-
tion node of the last hop is also the target node, and if so, the
now completed path is entered to the server maintained top-K
list. The cutoff threshold can also be updated at block 514. At
block 512, if it is determined that the destination node is not
the target node, but the current server manages its data, then
the server continues to look up the next hop by iterating
through blocks 502 to 510.

10

15

20

25

30

35

40

45

50

55

60

65

6

Ifthe destination node’s information is held by other serv-
ers, the current server batches the incomplete path sequences
based on their next hops at block 516. To avoid sending
excessive data, in each batch, each path sequence can be
checked against the cutoff threshold at block 518 and only
those path sequences with weights lower than the threshold
are forwarded at block 520. For the same destination node,
only the top-K incomplete path sequences are sent as a result
at block 522 since non-top-K paths are dropped at block 520.
The current cutoff threshold is also sent to inform the other
servers on a current weight of the complete paths.

Turning to FIG. 6, the asynchronous parallel processing
and exchanging of incomplete paths among distributed serv-
ers reaches a result when all servers stop working on the query
and have no further path sequences to exchange at block 600.
This happens because the cutoft thresholds are gradually
lowered to reflect the top-K paths completed. Then the locally
found top-K paths are merged to find and return a set of global
top-K paths at block 602.

The exemplary method described in FIG. 4 to FIG. 6 will
now be illustrated with an example walkthrough with refer-
enceto FIG. 7 and FIG. 8. For simplicity of explanation, FIG.
7 depicts a directed graph partitioned and managed by two
computing servers. Server 1 holds edge data about nodes A,
B, E, G, and H. Server 2 holds data about nodes C, D, F, and
L

FIG. 8 illustrates an iterative asynchronous parallel pro-
cessing method performed between the two computing serv-
ers to find the top-2 path sequences from node A to node I in
the graph shown in FIG. 7. Since the queried source node A is
held by Server 1, Server 1 looks up the incomplete path
sequences (A,C) and (A,E,D) with weights 1 and 3, respec-
tively at 800. Since nodes C and D are held by Server 2, Server
1 sends these two incomplete paths to Server 2, which sub-
sequently looks up the next hop(s) from locally stored data at
802. Server 2 finds one loop (AE,D,F,E) and discards it.
Server 2 also finds four incomplete path sequences and one
complete path sequence (A,E,D,F,I). For the complete path it
found, Server 2 entered it to the top-2 path list locally main-
tained. Server 2 sends the four incomplete paths to Server 1.

Server 1 receives four incomplete paths and looked up their
next hops at 804. Server 1 drops two loops and found two
complete path sequences (A,E,D,H,I) and (A,E,D,G,H,D).
Since two complete path sequences have been found, the
cutoff threshold is updated to reflect the greater of the two at
weight 8. Server 1 forwards the incomplete path sequence
(A,C,B,D) and the threshold 8 to Server 2.

Server 2 finds one loop, two incomplete path sequences
and one complete path sequence at 806. Server 2 has now
found two complete path sequences and thus updated its top-2
list and threshold. Server 2 then sends (A,C,B,D,H) and (A,C,
B,D,G) to Server 1. Server 1 also received the new threshold
from Server 2 at 6.

Server 1 looks up two more complete path sequences but
both exceeded the cutoff at 808 and dropped. Both servers
now complete their work and do not have more path
sequences to exchange. The local top-2 lists from the two
servers are merged to get a result.

Another exemplary iterative asynchronous parallel pro-
cessing method is described with reference to FIG. 9 to FIG.
13. The search operation is initiated in the different servers
where a source node and a target node are stored in parallel.
When a server receives a path sequence from another server,
the direction of the search can be identified by determining
whether a first node of the path sequence is the source node or
the target node. Each server keeps information for the inter-
mediate nodes that are reachable on the alternative paths

US 9,253,077 B2

7

between the source node and the target node. For each inter-
mediate node stored in the local storage, each server keeps a
list of top-K path sequences discovered from the source node
to the intermediate node as well as a list of top-K path
sequences discovered from the target node to the intermediate
node. These different lists are used to discover new shortest
paths between the source node and the target node. Once new
shortest paths are discovered, the top-K shortest path list and
the threshold are updated similar to the method described
with reference to FIG. 8.

Referring more particularly to FIG. 9 illustrating a flow
diagram of an initialization method of a parallel method with
multiple initialization points, the queried source node and
target node are broadcasted to all of the servers holding the
graph data at block 900. For a server that holds the edges
originating directly from the source node, one or more path
sequences can be created, initiating the search from the
source node to the target node at block 902. Another server,
which holds the edges directly reaching the target node, cre-
ates one or more path sequences, initiating the search in a
reverse order, from the target node to the source node. Each of
these servers then initializes an empty list to store the top-K
path sequences found so far at block 904 and initializes a
cutoff threshold, which is used to limit the number of path
sequences to track, to infinity at block 906. For every inter-
mediate node, the servers initialize one empty list to store
top-K path sequences from the source node to intermediate
nodes and another empty list to store top-K path sequences
from the target node to the intermediate nodes at blocks 908
and 910. The servers then multicast the incomplete path
sequences (e.g., the first hop) to other servers at block 912.
The distributed processing system then initializes an asyn-
chronous parallel processing at block 914.

According to an exemplary embodiment of the present
disclosure, an asynchronous parallel processing among serv-
ers has there is no set order on the execution operations among
servers at runtime. A server can multicast a batch of incom-
plete path sequences to respective servers holding the down-
stream data once the batch is available. As shown in FIG. 10,
at any time and asynchronously, a current server may receive
anew batch of incomplete path sequences and a cutoff thresh-
old from a remote sending server at block 1016. The incom-
plete paths can be initiated by either from the source node or
the target node. A cutoff threshold of the current server is
updated to be the lesser of the current threshold and the cutoff
threshold of the sending server.

For each incomplete path sequence in the received batch,
the current server looks up a next hop (edge) from a local
adjacency list that it manages 1018. If the next hop destines to
anode that has been visited before by the incomplete path, the
path sequence has formed a loop and the extended path is
dropped at block 1020. If not, the next hop is added at the end
of the incomplete path sequence with its aggregated weight
updated at block 1022. The updated path weight is checked
against the threshold at block 1024. If it is determined that that
updated path weight is greater than the threshold, the path
sequence can be dropped. That is, an updated path weight
greater than the threshold indicates that there are at least K
other completed path sequences from source to target that
have lower weights. The top-K intermediate shortest path
sequences lists are updated as shorter path sequences from the
source node and the target node to intermediate nodes at block
1026. The intermediate path sequences are checked as to
whether they form a new path sequence from source to target
node at block 1028. If a new shortest path sequence is dis-
covered, the path sequence is entered to the server’s top-K list
at block 1030. The completed path sequence is entered to the

10

20

25

35

40

45

50

8

server maintained top-K list if the destination node of the last
hop is also the target node at block 1032. The cutoff threshold
can be updated at block 1034. If it is determined that the
destination node is not the target node but the current server
manages its data at block 1036, the server continues to look up
the next hop by iterating through blocks 1018 to 1032.

Ifthe destination node’s information is held by other serv-
ers, the current server batches the incomplete path sequences
based on their next hops at block 1038. To avoid sending
excessive data, in each batch, each path sequence is checked
against the cutoff threshold at block 1040 and only path
sequences with weights than the cutoff threshold are for-
warded at block 1042. For the same destination node, only the
top-K incomplete path sequences are sent since non-top-K
path sequences will not be included in a result at block 1044.
The current cutoff threshold is also sent to inform the other
servers of a highest weight of the complete paths.

Turning to FIG. 11, the asynchronous parallel processing
and exchanging of incomplete path sequences among distrib-
uted servers reaches a result when all servers stop working on
the query and have no further path sequences to exchange at
block 1046. This happens because the cutoff thresholds are
gradually lowered to reflect the top-K paths completed. The
locally found top-K path sequences are merged to find and
return the global top-K paths at block 1048.

The exemplary method described in FI1G. 9 to FIG. 11 will
now be illustrated with an example walkthrough with refer-
ence to FIG. 12 and FIG. 13. For simplicity of explanation,
FIG. 12 depicts a small, bidirectional graph partitioned and
managed by two computing servers. Server 1 holds edge data
aboutnodes A, B, D, F, and G. Server 2 holds data about nodes
C,E, and H.

FIGS. 13A-B illustrate an iterative asynchronous parallel
processing method performed between the two computing
servers to find the top-2 paths from node A to node H in the
graph shown in FIG. 12. Since the queried source node A is
held by Server 1, Server 1 looks up the incomplete path
sequences (A,B,C), (A,D,C) and (A,D,E) with weights 2, 4
and 3 respectively at 1300. Since the nodes C and E are held
by Server 2, Server 1 sends these three incomplete path
sequences to Server 2. The incomplete path sequences (A,B,
A) and (A,D,A) are dropped since loops are detected in these
incomplete paths. Server 1 also updates the top-2 intermedi-
ate shortest path sequences from source to the nodes B and D
at 1302.

While Server 1 prepares the first batch of sequences to
send, Server 2 initiates an inverse search from a target node to
a source node as the target node H is held by Server 2. Server
2 looks up the incomplete path sequences (H,E.D), (H,F) and
(H,G) with weights 3, 1 and 1 respectively at 1304. Since the
nodes D, F and G are held by Server 1, Server 2 sends these
incomplete path sequences to Server 1. Server 2 also updates
the top-2 intermediate shortest path sequences from target to
node E at 1306.

After receiving the three incomplete paths from Server 1,
Server 2 subsequently looks up the next hop(s) from locally
stored data at 1312. Server 2 finds a loop in the path sequences
(A,B,C.B), (A,D,C.D, (A,D,E,D) and discards them. Server 2
also finds six incomplete path sequences and one complete
path sequence (A,D,E,H). For the complete path sequence
found, Server 2 enters it to the top-2 path list locally main-
tained. Server 2 then sends the six incomplete paths to Server
1. Server 2 also updates the top-2 intermediate shortest path
sequences from source to the nodes C and E at 1314.

Server 1 receives three incomplete path sequences and
looks up their next hops at 1308. Five incomplete path
sequences (H,E,D,E), (H,F,H), (H,F,G,H), (H,G,H), (H,G.F,

US 9,253,077 B2

9

H) are dropped since loops are detected in these incomplete
paths. One complete path sequence is discovered (H,E,D,A)
and entered to the top-2 path list locally maintained. Remain-
ing five incomplete path sequences (H,E,D,C), (H,F,C), (H,F,
G,0), (H,G,0), (H,G,F,C) are sent to Server 2 for further
processing. Server 1 also updates the top-2 intermediate
shortest path sequences from target to nodes D, F and G at
1310.

Server 2 receives five incomplete paths from Server 1 and
follows these paths. After updating the top-2 intermediate
shortest paths a new path sequence from H to C is found
(H,F,C), which has a weight of 2 at 1322. Server 2 already
knows that there is a path sequence (A,B,C) from A to C with
atotal weight of 2. By combining these two intermediate path
sequences, a new complete path ABCFH with a total weight
of'4 is discovered. Since two complete path sequences (A,B,
C,F,H), (A,D,E,H) have been found, the cutoft threshold is
updated to reflect the greater of the two at weight 5. After
following the incomplete path sequences received from
Server 1, eight path sequences are dropped since the total
weight of these path sequences exceeds the threshold. These
path sequences are: (H,E,D,C,B), (H,E,D,C,F), (H,E,D,C,G),
(H,F,G,C,B), (HFG,C,D), (HG,C,D), H,GFCB), (HGF,
C,D) at 1320. Also, seven path sequences are dropped since
these path sequences contain a loop. These path sequences are
(H,E,D,C,D), (HF,C,F), (H,F,G,C,)F), (HFG,C,G), (HG,C,
G), HGFCF), HG/FC,G). Five incomplete path
sequences are sent to Server 1 together with the updated
threshold value. These path sequences are: (H,F,C,B), (H,F,
C,D), (HF,C,G), (HG,C,B), (H,G,CF).

Server 1 receives six incomplete path sequences and looks
up their next hops at 1316. One complete path sequence is
discovered (A,B,C,F.H) with a total weight of 4. Since two
complete path sequences (A,B,C,F,H), (H,E,D,A) have been
found, the cutoff threshold is updated to reflect the greater of
the two at weight 5. Eight path sequences are dropped since
the total weight of these paths sequences exceed the thresh-
old. These path sequences are: (A,B,C,D,E), (A,B,C.F.G),
(A,B,C,G,F), (A,B,C,G,H), (A,D,C,B), (A,D,C,F), (A,D,C,
QG), (A,D,E,H). Also, four path sequences are dropped since
these path sequences contain a loop. These path sequences
are: (A,B,C,D,A), (A,B,C.D,C), (A,B,C,F,C), (A,B,C,G,0).
Server 1 also updates the top-2 intermediate shortest path
sequences from source to the nodes B, D, F and G at 1318.
Server 1 stops sending messages as there is no path sequence
to follow up.

Server 1 receives five incomplete path sequences from
Server 2 at 1324. After following these path sequences one
complete path sequence is discovered (H,F,C,B,A). However,
this path sequence was already discovered in the reverse order
and can be discarded. Three other path sequences are dropped
since the total weight exceeds the threshold. These are: (H.F,
CD,A), (HFCDE), (HG,CB,A). Also eight path
sequences are dropped since these path sequences contain a
loop. These path sequences are: (H,F,C,B,C), (H,F,C,D,C),
(H,F,C,G,F), (H,F.C,G,0), (H,F.C,G,H), (HG,C,B,C), (HG,
C,FH), (H,G,C,FO).

Both servers have now completed their work and do not
have more path sequences to exchange. The local top-2 lists
from the two servers are merged to get a result.

The methodologies of embodiments of the disclosure may
be particularly well-suited for use in an electronic device or
alternative system. Accordingly, embodiments of the present
disclosure may take the form of an entirely hardware embodi-
ment or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a “pro-
cessor”, “circuit,” “module” or “system.” Furthermore,

25

30

35

40

45

60

10

embodiments of the present disclosure may take the form of
a computer program product embodied in one or more com-
puter readable medium(s) having computer readable program
code stored thereon.

Any combination of one or more computer usable or com-
puter readable medium(s) may be utilized. The computer-
usable or computer-readable medium may be a computer
readable storage medium. A computer readable storage
medium may be, for example but not limited to, an electronic,
magnetic, optical, electromagnetic, infrared, or semiconduc-
tor system, apparatus, device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer-readable storage medium would include the
following: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain or store
a program for use by or in connection with an instruction
execution system, apparatus or device.

Computer program code for carrying out operations of
embodiments of the present disclosure may be written in any
combination of one or more programming languages, includ-
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Embodiments of the present disclosure are described
above with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer pro-
gram products. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combina-
tions of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program instruc-
tions.

These computer program instructions may be stored in a
computer-readable medium that can direct a computer or
other programmable data processing apparatus to function in
a particular manner, such that the instructions stored in the
computer-readable medium produce an article of manufac-
ture including instruction means which implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

The computer program instructions may be stored in a
computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

For example, FIG. 14 is a block diagram depicting an
exemplary computer system for detecting top-K simple short-
est paths in a graph according to an embodiment of the present
disclosure. The computer system shown in FIG. 14 includes a

US 9,253,077 B2

11

processor 1401, memory 1402, signal source 1403, system
bus 1404, Hard Drive (HD) controller 1405, keyboard con-
troller 1406, serial interface controller 1407, parallel inter-
face controller 1408, display controller 1409, hard disk 1410,
keyboard 1411, serial peripheral device 1412, parallel periph-
eral device 1413, and display 1414.

In these components, the processor 1401, memory 1402,
signal source 1403, HD controller 1405, keyboard controller
1406, serial interface controller 1407, parallel interface con-
troller 1408, display controller 1409 are connected to the
system bus 1404. The hard disk 1410 is connected to the HD
controller 1405. The keyboard 1411 is connected to the key-
board controller 1406. The serial peripheral device 1412 is
connected to the serial interface controller 1407. The parallel
peripheral device 1413 is connected to the parallel interface
controller 1408. The display 1414 is connected to the display
controller 1409.

In different applications, some of the components shown in
FIG. 14 can be omitted. The whole system shown in FIG. 14
is controlled by computer readable instructions, which are
generally stored in the hard disk 1410, EPROM or other
non-volatile storage such as software. The software can be
downloaded from a network (not shown in the figures), stored
in the hard disk 1410. Alternatively, software downloaded
from a network can be loaded into the memory 1402 and
executed by the processor 1401 so as to complete the function
determined by the software.

The processor 1401 may be configured to perform one or
more methodologies described in the present disclosure,
illustrative embodiments of which are shown in the above
figures and described herein. Embodiments of the present
disclosure can be implemented as a routine that is stored in
memory 1402 and executed by the processor 1401 to process
the signal from the signal source 1403. As such, the computer
system is a general-purpose computer system that becomes a
specific purpose computer system when executing the routine
of the present disclosure.

Although the computer system described in FIG. 14 can
support methods according to the present disclosure, this
system is only one example of a computer system. Those
skilled of the art should understand that other computer sys-
tem designs can be used to implement the present invention.

It is to be appreciated that the term “processor” as used
herein is intended to include any processing device, such as,
for example, one that includes a central processing unit
(CPU) and/or other processing circuitry (e.g., digital signal
processor (DSP), microprocessor, etc.). Additionally, it is to
be understood that the term “processor” may refer to a multi-
core processor that contains multiple processing cores in a
processor or more than one processing device, and that vari-
ous elements associated with a processing device may be
shared by other processing devices.

The term “memory” as used herein is intended to include
memory and other computer-readable media associated with
a processor or CPU, such as, for example, random access
memory (RAM), read only memory (ROM), fixed storage
media (e.g., a hard drive), removable storage media (e.g., a
diskette), flash memory, etc. Furthermore, the term “I/O cir-
cuitry” as used herein is intended to include, for example, one
or more input devices (e.g., keyboard, mouse, etc.) for enter-
ing data to the processor, and/or one or more output devices
(e.g., printer, monitor, etc.) for presenting the results associ-
ated with the processor.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present

10

15

20

25

30

35

40

45

50

55

60

65

12

disclosure. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

Although illustrative embodiments of the present disclo-
sure have been described herein with reference to the accom-
panying drawings, it is to be understood that the disclosure is
not limited to those precise embodiments, and that various
other changes and modifications may be made therein by one
skilled in the art without departing from the scope of the
appended claims.

What is claimed is:

1. A method for determining a portion of a path in a dis-
tributed network of nodes between a source node and a target
node, wherein graph data representing a portion of a topology
of the distributed network of nodes is stored by a computing
server, the method comprising: receiving a batch of incom-
plete path sequences between the source node and the target
node; receiving a current cutoff threshold; updating the cur-
rent cutoff threshold upon determining that a local cutoff
threshold of the computing server is less than the current
cutoff threshold, wherein the current cutoff threshold is
updated to take a value of the local cutoff threshold; removing
each of the incomplete path sequences containing a loop from
the batch of incomplete path sequences to determine an
updated batch; appending a looked up edge to the updated
batch upon determining that a total path weight of the updated
batch is less than the current cutoff threshold to determine an
appended batch; and outputting the updated batch to at least
one additional computing server storing graph data represent-
ing an additional portion of the topology of the distributed
network of nodes.

2. The method of claim 1, wherein outputting the updated
batch further comprises communicating with the at least one
additional computing server via a communication switch.

3. The method of claim 1, wherein outputting the updated
batch further comprises: mapping a node identification of at
least one last node of the updated batch of incomplete path
sequences to a respective server that holds edge data associ-
ated with the node identification, wherein the at least one
additional computer server includes the respective server; and
multicasting the updated batch to the respective server.

4. The method of claim 1, performed in parallel by at least
one parallel computing server.

5. The method of claim 1, wherein the graph data of the
computing server is non-overlapping with graph data of the at
least one additional computing server.

6. The method of claim 1, further comprising receiving an
adjacency list data structure encoding edge data of the graph
data representing the topology of the distributed network of
nodes.

7. The method of claim 6, wherein the computing server
knows the edge data that the at least one additional computing
server manages.

US 9,253,077 B2

13

8. A method for determining a path in a distributed network
of' nodes, wherein graph data representing a topology of the
distributed network of nodes is partitioned and stored among
a plurality of computing servers connected via communica-
tion switches, the method comprising: initializing a search, in
response to a query specifying a source node and a target node
in the disturbed network of nodes, at an initial computing
server storing a portion of the graph data corresponding to the
source node; determining, by the plurality of computing serv-
ers, a plurality of path sequences forming the path between
the source node and the target node, each of the plurality of
computing servers, excluding a terminating computing
server, determining at least one path sequence between at
least two immediate neighboring nodes along the path; and
sending the at least one path sequence to at least one addi-
tional computing server of the plurality of computing servers
storing a respective portion of the graph data between the
source node toward the target node upon determining that a
path weight of the at least one path sequence is smaller than a
cutoff threshold; and determining, by the terminating com-
puting server, at least one path sequence directly to the target
node given the at least one path sequence of at least one
previous computing server and wherein determining, by the
plurality of computing servers, the plurality of path sequences
forming the path further comprises: receiving, at each of the
plurality of computing servers, a batch of incomplete path
sequences including the at least one path sequence and a
current cutoffthreshold; and removing each of the incomplete
path sequences containing a loop from the batch of incom-
plete path sequences to determine an updated batch and fur-
ther comprising: appending a looked up edge to the updated
batch upon determining that a total path weight of the updated
batch is less than the current cutoff threshold to determine an
appended batch; updating a list of path sequences upon deter-
mining that the path sequences of the appended batch reaches
the target node; and exiting upon determining that none of the
plurality computing servers have more sequences to
exchange and merge into the list of path sequences and out-
putting the list of path sequences as the path.

9. The method of claim 8, wherein determining, by the
plurality of computing servers, the plurality of path sequences
forming the path further comprises: updating the current cut-
off threshold upon determining that a local cutoff threshold of
the at least one additional computing server is less than the
current cutoff threshold, wherein the current cutoff threshold
is updated to take a value of the local cutoff threshold.

10. The method of claim 8, wherein sending the at least one
path sequence to the at least one additional computing server
of the plurality of computing servers storing the respective
portion of the graph data between the source node toward the
target node further comprises: mapping a node identification
of at least one last node of the at least one path sequence to a
respective computing server that holds edge data associated
with the node identification, wherein the at least one addi-
tional computing server includes the respective computing
server; and multicasting the updated batch to the respective
computing server.

11. The method of claim 8, wherein at least two of the
plurality of computer servers determine respective path
sequences in parallel.

12. The method of claim 8, wherein the graph data of each
of the plurality of computer servers is non-overlapping.

13. The method of claim 8, further comprising receiving an
adjacency list data structure encoding edge data of the graph
data representing the topology of the distributed network of
nodes.

40

45

55

14

14. The method of claim 13, wherein each of the plurality
of computing server knows the edge data that each other
computing server manages.

15. A method for determining a top-K simple shortest path
in a distributed network of nodes, wherein graph data repre-
senting a topology of the distributed network of nodes is
partitioned and stored among a plurality of computing servers
connected via communication switches, the method compris-
ing: receiving a query specifying a source node and a target
node in the disturbed network of nodes; initializing a search in
response to the query at an initial computing server storing a
portion of the graph data corresponding to the source node;
determining at least one path sequence directly from the
source node to its direct, immediate neighboring nodes; and
sending the at least one path sequence to at least one addi-
tional computing server storing a respective portion of the
graph data between the source node toward the target node
upon determining that a path weight of the at least one path
sequence is smaller than a cutoff threshold; for each addi-
tional computing server, in parallel, receiving a batch of
incomplete path sequences including the at least one path
sequence and a current cutoff threshold; updating the current
cutoff threshold upon determining that a local cutoff thresh-
old of the at least one additional computing server is less than
the current cutoff threshold, wherein the current cutoff
threshold is updated to take a value of the local cutoff thresh-
old; removing each of the incomplete path sequences con-
taining a loop from the batch of incomplete path sequences to
determine an updated batch; appending a looked up edge to
the updated batch upon determining that a total path weight of
the updated batch is less than the current cutoff threshold to
determine an appended batch; updating a top-K list of path
sequences upon determining that the path sequences of the
appended batch reaches the target node; and exiting upon
determining that none of the additional computing servers
have more sequences to exchange and merge into the top-K
list of path sequences and outputting the top-K list of path
sequences.

16. A computer program product for determining a portion
of'a path in a distributed network of nodes between a source
node and a target node, wherein graph data representing a
portion of a topology of the distributed network of nodes is
stored by the computer program product, the computer pro-
gram product comprising: a non-transitory computer read-
able storage medium having computer readable program
code embodied therewith, the computer readable program
code comprising: computer readable program code config-
ured to receive a batch of incomplete path sequences between
the source node and the target node and a current cutoff
threshold; computer readable program code configured to
update the current cutoft threshold upon determining that a
local cutoff threshold of the computer program product is less
than the current cutoff threshold, wherein the current cutoff
threshold is updated to take a value of the local cutoff thresh-
old; computer readable program code configured to remove
each of the incomplete path sequences containing a loop from
the batch of incomplete path sequences to determine an
updated batch; computer readable program code configured
to append a looked up edge to the updated batch upon deter-
mining that a total path weight of the updated batch is less
than the current cutoff threshold to determine an appended
batch; and computer readable program code configured to
output the updated batch to at least one additional computer
program product storing graph data representing an addi-
tional portion of the topology of the distributed network of
nodes.

US 9,253,077 B2

15

17. The computer program product of claim 16, wherein
the computer program product is connected to the at least one
additional computer program product via a communication
switch.

18. The computer program product of claim 16, wherein
outputting the updated batch further comprises: mapping a
node identification of at least one last node of the updated
batch of incomplete path sequences to a respective server that
holds edge data associated with the node identification,
wherein the at least one additional computer server includes
the respective server; and multicasting the updated batch to
the respective server.

19. The computer program product of claim 16, performed
in parallel by at least one parallel computing server.

20. The computer program product of claim 16, wherein
the graph data of the computing server is non-overlapping
with graph data of the at least one additional computing
server.

21. The computer program product of claim 16, further
comprising receiving an adjacency list data structure encod-
ing edge data of the graph data representing the topology of
the distributed network of nodes.

22. The computer program product of claim 21, wherein
the computing server knows the edge data that the at least one
additional computing server manages.

23. A computer program product for determining a path in
a distributed network of nodes, wherein graph data represent-
ing a topology of the distributed network of nodes is parti-
tioned and stored among a plurality of computing servers
connected via communication switches, the computer pro-
gram product comprising: a non-transitory computer read-
able storage medium having computer readable program
code embodied therewith, the computer readable program
code comprising: computer readable program code config-
ured to initialize a search, in response to a query specifying a
source node and a target node in the disturbed network of
nodes, at an initial computing server of the plurality of com-
puting servers, the initial computer server storing a portion of
the graph data corresponding to the source node; computer
readable program code configured to determine, by the plu-
rality of computing servers, a plurality of path sequences
forming the path between the source node and the target node,
each ofthe plurality of computing servers, excluding a termi-
nating computing server of the plurality of computing serv-
ers, determining at least one path sequence between at least
two immediate neighboring nodes along the path; and send-
ing the at least one path sequence to at least one additional
computing server of the plurality of computing servers stor-
ing a respective portion of the graph data between the source
node toward the target node upon determining that a path
weight of the at least one path sequence is smaller than a
cutoff threshold; and computer readable program code con-
figured to determine, by the terminating computing server, at
least one path sequence directly to the target node given the at
least one path sequence of at least one previous computing
server and wherein computer readable program code config-
ured to determine, by the plurality of computing servers, the
plurality of path sequences forming the path further com-
prises: computer readable program code configured to
receive, at each of the plurality of computing servers, a batch
of incomplete path sequences including the at least one path
sequence and a current cutoff threshold; computer readable
program code configured to update the current cutoff thresh-
old upon determining that a local cutoff threshold of the at
least one additional computing server is less than the current
cutoff threshold, wherein the current cutoff threshold is
updated to take a value of the local cutoft threshold; and

10

15

20

25

30

35

40

45

50

55

60

65

16

computer readable program code configured to remove each
of'the incomplete path sequences containing a loop from the
batch of incomplete path sequences to determine an updated
batch.

24. The computer program product of claim 23, further
comprising: computer readable program code configured to
append a looked up edge to the updated batch upon determin-
ing that atotal path weight of the updated batch is less than the
current cutoff threshold to determine an appended batch;
computer readable program code configured to update a list
of path sequences upon determining that the path sequences
of the appended batch reaches the target node; and computer
readable program code configured to exit upon determining
that none of the plurality computing servers have more
sequences to exchange and merge into the list of path
sequences and outputting the list of path sequences as the
path.

25. The computer program product of claim 23, wherein
sending the at least one path sequence to the at least one
additional computing server of the plurality of computing
servers storing the respective portion of the graph data
between the source node toward the target node further com-
prises: computer readable program code configured to map a
node identification of at least one last node of the at least one
path sequence to a respective computing server that holds
edge data associated with the node identification, wherein the
at least one additional computing server includes the respec-
tive computing server; and computer readable program code
configured to multicast the updated batch to the respective
computing server.

26. The computer program product of claim 23, wherein at
least two of the plurality of computer servers determine
respective path sequences in parallel.

27. The computer program product of claim 23, wherein
the graph data of each of the plurality of computer servers is
non-overlapping.

28. The computer program product of claim 23, further
comprising computer readable program code configured to
receive an adjacency list data structure encoding edge data of
the graph data representing the topology of the distributed
network of nodes.

29. The computer program product of claim 23, wherein
each of the plurality of computing server knows the edge data
that each other computing server manages.

30. A computer program product for determining a top-K
simple shortest path in a distributed network of nodes,
wherein graph data representing a topology of the distributed
network of nodes is partitioned and stored among a plurality
of computing servers connected via communication
switches, the computer program product comprising: a non-
transitory computer readable storage medium having com-
puter readable program code embodied therewith, the com-
puter readable program code comprising: computer readable
program code configured to receive a query specifying a
source node and a target node in the disturbed network of
nodes; computer readable program code configured to initial-
ize a search in response to the query at an initial computing
server of the plurality of computing servers, the initial com-
puter server storing a portion of the graph data corresponding
to the source node; computer readable program code config-
ured to determine at least one path sequence directly from the
source node to its direct, immediate neighboring nodes; and
computer readable program code configured to send the at
least one path sequence to at least one additional computing
server storing a respective portion of the graph data between
the source node toward the target node upon determining that
apath weight of the at least one path sequence is smaller than

US 9,253,077 B2

17

a cutoff threshold; for each additional computing server, in
parallel, receiving a batch of incomplete path sequences
including the at least one path sequence and a current cutoff
threshold; updating the current cutoff threshold upon deter-
mining that a local cutoff threshold of the at least one addi-
tional computing server is less than the current cutoff thresh-
old, wherein the current cutoff threshold is updated to take a
value of the local cutoff threshold; removing each of the
incomplete path sequences containing a loop from the batch
of'incomplete path sequences to determine an updated batch;
appending a looked up edge to the updated batch upon deter-
mining that a total path weight of the updated batch is less
than the current cutoff threshold to determine an appended
batch; updating a top-K list of path sequences upon determin-
ing that the path sequences of the appended batch reaches the
target node; and exiting upon determining that none of the
additional computing servers have more sequences to
exchange and merge into the top-K list of path sequences and
outputting the top-K list of path sequences.

#* #* #* #* #*

20

18

